Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
ACS Appl Mater Interfaces ; 16(12): 14474-14488, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38470984

RESUMO

Coronary artery stents are life-saving devices, and millions of these devices are implanted annually to treat coronary heart disease. The current gold standard in treatment is drug-eluting stents, which are coated with a biodegradable polymer layer that elutes antiproliferative drugs to prevent restenosis due to neointimal hyperplasia. Stenting is commonly paired with systemic antiplatelet therapy to prevent stent thrombosis. Despite their clinical success, current stents have significant limitations including inducing local inflammation that drives hyperplasia; a lack of hemocompatibility that promotes thrombosis, increasing need for antiplatelet therapy; and limited endothelialization, which is a critical step in the healing process. In this research, we designed a novel material for use as a next-generation coating for drug-eluting stents that addresses the limitations described above. Specifically, we developed a recombinant spider silk material that is functionalized with an REDV cell-adhesive ligand, a peptide motif that promotes specific adhesion of endothelial cells in the cardiovascular environment. We illustrated that this REDV-modified spider silk variant [eADF4(C16)-REDV] is an endothelial-cell-specific material that can promote the formation of a near-confluent endothelium. We additionally performed hemocompatibility assays using human whole blood and demonstrated that spider silk materials exhibit excellent hemocompatibility under both static and flow conditions. Furthermore, we showed that the material displayed slow enzyme-mediated degradation. Finally, we illustrated the ability to load and release the clinically relevant drug everolimus from recombinant spider silk coatings in a quantity and at a rate similar to that of commercial devices. These results support the use of REDV-functionalized recombinant spider silk as a coating for drug-eluting stents.


Assuntos
Reestenose Coronária , Trombose , Humanos , Células Endoteliais , Hiperplasia , Vasos Coronários , Inibidores da Agregação Plaquetária/farmacologia , Stents , Reestenose Coronária/prevenção & controle
2.
Macromol Rapid Commun ; : e2400032, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38471754

RESUMO

A versatile and robust end-group derivatization approach using oximes has been developed for the detection of oxidative degradation of synthetic polyisoprenes and polybutadiene. This method demonstrates broad applicability, effectively monitoring degradation across a wide molecular weight range through ultraviolet (UV)-detection coupled to gel permeation chromatography. Importantly, it enables the effective monitoring of degradation via derivatization-induced UV-maximum shifts, even in the presence of an excess of undegraded polyene, overcoming limitations previously reported with refractive index detectors. Notably, this oxime-based derivatization methodology is used in enzymatic degradation experiments of synthetic polyisoprenes characterized by a cis: trans ratio with the rubber oxygenase LcpK30. It reveals substantial UV absorption in derivatized enzymatic degradation products of polyisoprene with molecular weights exceeding 1000 g mol-1 - an unprecedented revelation for this enzyme's activity on such synthetic polyisoprenes. This innovative approach holds promise as a valuable tool for advancing research into the degradation of synthetic polyisoprenes and polybutadiene, particularly under conditions of low organocatalytic or enzymatic degradation activity. With its broad applicability and capacity to reveal previously hidden degradation processes, it represents a noteworthy contribution to sustainable polymer chemistry.

3.
Biodegradation ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38310578

RESUMO

Plastic pollution has become a global problem since the extensive use of plastic in industries such as packaging, electronics, manufacturing and construction, healthcare, transportation, and others. This has resulted in an environmental burden that is continually growing, which has inspired many scientists as well as environmentalists to come up with creative solutions to deal with this problem. Numerous studies have been reviewed to determine practical, affordable, and environmentally friendly solutions to regulate plastic waste by leveraging microbes' innate abilities to naturally decompose polymers. Enzymatic breakdown of plastics has been proposed to serve this goal since the discovery of enzymes from microbial sources that truly interact with plastic in its naturalistic environment and because it is a much faster and more effective method than others. The scope of diverse microbes and associated enzymes in polymer breakdown is highlighted in the current review. The use of co-cultures or microbial consortium-based techniques for the improved breakdown of plastic products and the generation of high-value end products that may be utilized as prototypes of bioenergy sources is highlighted. The review also offers a thorough overview of the developments in the microbiological and enzymatic biological degradation of plastics, as well as several elements that impact this process for the survival of our planet.

4.
Chemosphere ; 351: 141271, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262490

RESUMO

Microplastics, tiny, flimsy, and direct progenitors of principal and subsidiary plastics, cause environmental degradation in aquatic and terrestrial entities. Contamination concerns include irrevocable impacts, potential cytotoxicity, and negative health effects on mortals. The detection, recovery, and degradation strategies of these pollutants in various biota and ecosystems, as well as their impact on plants, animals, and humans, have been a topic of significant interest. But the natural environment is infested with several types of plastics, all having different chemical makeup, structure, shape, and origin. Plastic trash acts as a substrate for microbial growth, creating biofilms on the plastisphere surface. This colonizing microbial diversity can be glimpsed with meta-genomics, a culture-independent approach. Owing to its comprehensive description of microbial communities, genealogical evidence on unconventional biocatalysts or enzymes, genomic correlations, evolutionary profile, and function, it is being touted as one of the promising tools in identifying novel enzymes for the degradation of polymers. Additionally, computational tools such as molecular docking can predict the binding of these novel enzymes to the polymer substrate, which can be validated through in vitro conditions for its environmentally feasible applications. This review mainly deals with the exploration of metagenomics along with computational tools to provide a clearer perspective into the microbial potential in the biodegradation of microplastics. The computational tools due to their polymathic nature will be quintessential in identifying the enzyme structure, binding affinities of the prospective enzymes to the substrates, and foretelling of degradation pathways involved which can be quite instrumental in the furtherance of the plastic degradation studies.


Assuntos
Microbiota , Microplásticos , Animais , Humanos , Microplásticos/toxicidade , Plásticos , Simulação de Acoplamento Molecular , Ecossistema , Estudos Prospectivos , Polímeros , Biodegradação Ambiental
5.
Carbohydr Polym ; 328: 121745, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220331

RESUMO

Angelica sinensis polysaccharide (ASP) possesses diverse bioactivities; however, its metabolic fate following oral administration remains poorly understood. To intuitively determine its intestinal digestion behavior after oral administration, ASP was labeled with fluorescein, and it was found to accumulate and be degraded in the cecum and colon. Therefore, we investigated the in vitro enzymatic degradation behavior and identified the products. The results showed that ASP could be degraded into fragments with molecular weights similar to those of the fragments observed in vivo. Structural characterization revealed that ASP is a highly branched acid heteropolysaccharide with AG type II domains, and its backbone is predominantly composed of 1,3-Galp, →3,6)-Galp-(1→6)-Galp-(1→, 1,4-Manp, 1,4-Rhap, 1,3-Glcp, 1,2,3,4-Galp, 1,3,4,6-Galp, 1,3,4-GalAp and 1,4-GlcAp, with branches of Araf, Glcp and Galp. In addition, the high molecular weight enzymatic degradation products (ASP H) maintained a backbone structure almost identical to that of ASP, but exhibited only partial branch changes. Then, the results of ethanol-induced acute liver injury experiments revealed that ASP and ASP H reduced the expression of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and malondialdehyde (MDA) and increased the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) levels, thereby relieving ethanol-induced acute liver injury.


Assuntos
Angelica sinensis , Angelica sinensis/química , Etanol/toxicidade , Etanol/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Fígado , Estresse Oxidativo
6.
J Clin Med ; 13(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276139

RESUMO

BACKGROUND: The abdominal aortic aneurysm (AAA) is defined as an increase in aortic diameter by more than 50% and is associated with a high risk of rupture and mortality without treatment. The aim of this study is to analyze the role of aortic adventitial collagen photocrosslinking by UV-A irradiation on the biomechanical profile of the aortic wall. METHODS: This experimental study is structured in two parts: the first part includes in vitro uniaxial biomechanical evaluation of porcine adventitial tissue subjected to either short-term elastolysis or long-term collagenolysis in an attempt to duplicate two extreme situations as putative stages of aneurysmal degeneration. In the second part, we included biaxial biomechanical evaluation of in vitro human abdominal aortic adventitia and human AAA adventitia specimens. Biomechanical profiles were examined for porcine and human aortic tissue before and after irradiation with UV-A light (365 nm wavelength). RESULTS: On the porcine aortic sample, the enhancing effect of irradiation was evident both on the tissue subjected to elastolysis, which had a high collagen-to-elastin ratio, and on the tissue subjected to prolonged collagenolysis despite being considerably depleted in collagen. Further, the effect of irradiation was conclusively demonstrated in the human adventitia samples, where significant post-irradiation increases in Cauchy stress (longitudinal axis: p = 0.001, circumferential axis: p = 0.004) and Young's modulus (longitudinal axis: p = 0.03, circumferential axis: p = 0.004) were recorded. Moreover, we have a stronger increase in the strengthening of the AAA adventitia samples following the exposure to UV-A irradiation (p = 0.007) and a statistically significant but not very important increase (p = 0.021) regarding the stiffness in the circumferential axis. CONCLUSIONS: The favorable effect of UV irradiation on the strength and stiffness of degraded aortic adventitia in experimental situations mimicking early and later stages of aneurysmal degeneration is essential for the development and potential success of procedures to prevent aneurysmal ruptures. The experiments on human normal and aneurysmal adventitial tissue confirmed the validity and potential success of a procedure based on exposure to UV-A radiation.

7.
ChemSusChem ; : e202301551, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252878

RESUMO

Orange peel and sugar beet pulp contain large quantities of pectin, which can be turned via galactaric acid into furan dicarboxylic acid (FDCA) and its esters. In this work, we show the polymerisation of these FDCA esters into high-molecular-weight, 70-100 kg/mol, poly(ethylene 2,5-furanoate) (PEF). PEF is an emerging bio-based alternative for poly(ethylene terephthalate) (PET), widely used in for example packaging applications. Closing the loop, we also demonstrated and confirmed that PEF can be hydrolysed by enzymes, which are known to hydrolyse PET, back into FDCA for convenient recycling and recovery of monomers.

8.
Microbiol Spectr ; 12(1): e0310623, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38047676

RESUMO

IMPORTANCE: Here, we provide new insights into the possible fate of cyclic lipopeptides as prominent specialized metabolites from beneficial bacilli and pseudomonads once released in the soil. Our data illustrate how the B. velezensis lipopeptidome may be enzymatically remodeled by Streptomyces as important members of the soil bacterial community. The enzymatic arsenal of S. venezuelae enables an unsuspected extensive degradation of these compounds, allowing the bacterium to feed on these exogenous products via a mechanism going beyond linearization, which was previously reported as a detoxification strategy. As soils are carbon-rich and nitrogen-poor environments, we propose a new role for cyclic lipopeptides in interspecies interactions, which is to fuel the nitrogen metabolism of a part of the rhizosphere microbial community. Streptomyces and other actinomycetes, producing numerous peptidases and displaying several traits of beneficial bacteria, should be at the front line to directly benefit from these metabolites as "public goods" for microbial cooperation.


Assuntos
Lipopeptídeos , Streptomyces , Lipopeptídeos/metabolismo , Rizosfera , Streptomyces/metabolismo , Nitrogênio , Solo , Microbiologia do Solo
9.
Bioresour Technol ; 394: 130249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154735

RESUMO

Effective production of xylooligosaccharides (XOS) with lower proportion of xylose entails unique and robust xylanases. In this study, two novel xylanases from Trichoderma asperellum ND-1 belonging to glycoside hydrolase families 10 (XynTR10) and 11 (XynTR11) were over-expressed in Komagataella phaffii X-33 and characterized to be robust enzymes with high halotolerance and ethanol tolerant. Both enzymes displayed strict substrate specificity towards beechwood xylan and wheat arabinoxylan. (Glu153/Glu258) and (Glu161/Glu252) were key catalytic sites for XynTR10 and XynTR11. Notably, XynTR11 could rapidly degrade xylan/XOS into xylobiose without xylose via transglycosylation. Direct degradation of corncob using XynTR10 and XynTR111 displayed that while XynTR10 yielded 77% xylobiose and 25% xylose, XynTR11 yielded much less xylose (11%) and comparable amounts of xylobiose (63%). XynTR10 or XynTR111 has great potential as a catalyst for bioconversion of xylan-containing agricultural waste into high-value products (biofuel or XOS), which is of significant benefit for the economy and environment.


Assuntos
Glucuronatos , Glicosídeo Hidrolases , Hypocreales , Xilanos , Humanos , Xilanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Zea mays/metabolismo , Xilose/metabolismo , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Oligossacarídeos/metabolismo , Hidrólise , Especificidade por Substrato
10.
Sci Total Environ ; 912: 169598, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38157911

RESUMO

One Health closely integrates healthy farming, human medicine, and environmental ecology. Due to the ecotoxicity and risk of transmission of drug resistance, veterinary medicines (VMs) are regarded as emerging environmental pollutants. To reduce or mitigate the environmental risk of VMs, developing friendly, safe, and effective removal technologies is an important means of environmental remediation for VMs. Many previous studies have proved that biodegradation has significant advantages in removing VMs, and biodegradation based on enzyme catalysis presents higher operability and specificity. This review focused on biodegradation strategies of environmental pollutants and reviewed the enzymatic degradation of VMs including antimicrobial drugs, insecticides, and disinfectants. We reviewed the sources and catalytic mechanisms of peroxidase, laccase, and organophosphorus hydrolases, and summarized the latest research status of immobilization methods and bioengineering techniques in improving the performance of degrading enzymes. The mechanism of enzymatic degradation for VMs was elucidated in the current research. Suggestions and prospects for researching and developing enzymatic degradation of VMs were also put forward. This review will offer new ideas for the biodegradation of VMs and have a guide significance for the risk mitigation and detoxification of VMs in the environment.


Assuntos
Poluentes Ambientais , Inseticidas , Humanos , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Lacase/metabolismo , Agricultura
11.
Pharmaceutics ; 15(12)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38140063

RESUMO

This study aimed to investigate the behavior of chitosan/quaternized chitosan fibers in media mimicking wound exudates to understand their capacities as wound dressing. Fiber analysis of the fibers using dynamic vapor sorption proved their ability to adsorb moisture up to 60% and then to desorb it as a function of humidity, indicating their outstanding breathability. Dissolution analyses showed that quaternized chitosan leached from the fibers in water and PBS, whereas only small portions of chitosan were solubilized in water. In media containing lysozyme, the fibers degraded with a rate determined by their composition and pH, reaching a mass loss of up to 47% in media of physiologic pH. Notably, in media mimicking the wound exudate during healing, they adsorbed moisture even when their mass loss due to biodegradation was high, whereas they were completely degraded in the media of normal tissues, indicating bioabsorbable dressing capacities. A mathematical model was constructed, which characterized the degradation rate and morphology changes of chitosan/quaternized chitosan fibers through analyses of dynamics in scale space, using the Theory of Scale Relativity. The model was validated using experimental data, making it possible to generalize it to the degradation of other biopolymeric systems that address wound healing.

12.
Pharmaceutics ; 15(11)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-38004564

RESUMO

Volumizing fillers aim to create or restore facial volume in fat layers. To provide strong tissue lifting and long-term persistence, gels are generally designed with stiff properties, characterized by a high storage modulus (G'). However, clinical evidence shows a discrepancy between high G' and good lifting capacities, especially after skin tension has been exerted on the gel. To better explore the in vivo behavior of a gel, we first evaluated the elastic moduli of five commercial volumizers (RHA4, JUVVOL, RESVOL, RESLYFT, and BELVOL) in dynamic compression mode, E'. We further developed a Projection Index score based on the rheological assessment of creep in compression to mimic skin tension-induced stress relaxation (flattening). Finally, the ability of a gel to resist enzymatic degradation was analyzed with a multidose approach. Despite similar clinical indications, volumizers exhibited distinct behaviors. RHA4 and BELVOL showed the highest E' values (resistance to strain), RHA4, JUVVOL, and RESVOL exhibited the greatest projection capacities, while JUVVOL and RHA4 offered the largest persistence to enzymatic degradation. In this article, we introduce the use of the Projection Index to efficiently assess the ability of a gel to lift tissues, thus increasing preclinical models' efficiency and reducing the need for animal studies.

13.
Int J Biol Macromol ; 253(Pt 7): 127496, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37858641

RESUMO

With global enforcement of plastic bans and restrictions, the biodegradable plastic, e.g., polylactic acid (PLA), has been extensively employed as a primary substitute for traditional petroleum-based plastics. However, the growing problem associated with PLA waste accumulation is posing grand environmental challenges. In addition, although PLA has the degrading property under natural conditions, the degradation process takes too long and the degradation products cannot be recycled. In this context, enzymatic degradation of PLA arouses great attention in scientific communities. This study aims at selecting the most cost-effective protease from various enzymes and optimizing the enzymolysis conditions towards the degradation of PLA. We will demonstrate that under an optimal temperature of 45 °C, a pH vale of 11, and an enzyme concentration of 0.6 mg mL-1, the protease K would achieve a remarkable degradation efficiency (> 99 %) for PLA films within just 50 min. Finally, molecular dynamics (MD) simulation and molecular docking studies reveal the mechanism behind the protease-induced PLA degradation, providing a promising direction for waste treatment and resource utilization for future biodegradable plastics.


Assuntos
Plásticos Biodegradáveis , Poliésteres , Endopeptidase K , Simulação de Acoplamento Molecular , Poliésteres/metabolismo , Plásticos
14.
Front Bioeng Biotechnol ; 11: 1253221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736328

RESUMO

Introduction: Poly(1,3-trimethylene carbonate) (PTMC) is a flexible amorphous polymer with good degradability and biocompatibility. The degradation of PTMC is critical for its application as a degradable polymer, more convenient and easy-to-control cross-linking strategies for preparing PTMC are required. Methods: The blends of poly(trimethylene carbonate) (PTMC) and cross-linked poly(ethylene glycol) diacrylate (PEGDA) were prepared by mixing photoactive PEGDA and PTMC and subsequently photopolymerizing the mixture with uv light. The physical properties and in vitro enzymatic degradation of the resultant PTMC/cross-linked PEGDA blends were investigated. Results: The results showed that the gel fraction of PTMC/cross-linked PEGDA blends increased while the swelling degree decreased with the content of PEGDA dosage. The results of in vitro enzymatic degradation confirmed that the degradation of PTMC/cross-linked PEGDA blends in the lipase solution occurred under the surface erosion mechanism, and the introduction of the uv cross-linked PEGDA significantly improved the resistance to lipase erosion of PTMC; the higher the cross-linking degree, the lower the mass loss. Discussion: The results indicated that the blends/cross-linking via PEGDA is a simple and effective strategy to tailor the degradation rate of PTMC.

15.
Sci Total Environ ; 905: 167098, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37717754

RESUMO

Microplastics are ubiquitous environmental pollutants with the potential for adverse impacts on ecosystems and human health. These particles originate from the fragmentation of larger plastic items, shedding from synthetic fibers, tire abrasions, and direct release from personal care products and industrial processes. Once released into the environment, microplastics can disrupt ecosystems, accumulate in organisms, cause physical harm, and carry chemical pollutants that pose risks to both wildlife and human health. There is an urgent need to comprehensively explore the multifaceted issue of microplastic pollution and understand microbial degradation to reduce environmental pollution caused by microplastics. This paper presents a comprehensive exploration of microplastics, including their types, composition, advantages, and disadvantages, as well as the journey and evolution of microplastic pollution. The impact of microplastics on the microbiome and microbial communities is elucidated, highlighting the intricate interactions between microplastics and microbial ecosystems. Furthermore, the microbial degradation of microplastics is discussed, including the identification, characterization, and culturing methods of microplastic-degrading microorganisms. Mechanisms of microplastic degradation and the involvement of microbial enzymes are elucidated to shed light on potential biotechnological applications. Strategies for reducing microplastic pollution are presented, encompassing policy recommendations and the importance of enhanced waste management practices. Finally, the paper addresses future challenges and prospects in the field, emphasizing the need for international collaboration, research advancements, and public engagement. Overall, this study underscores the urgent need for concerted efforts to mitigate microplastic pollution and offers valuable insights for researchers, policymakers, and stakeholders involved in environmental preservation.


Assuntos
Poluentes Ambientais , Microbiota , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos/química , Ecossistema , Poluentes Químicos da Água/análise , Poluição Ambiental , Monitoramento Ambiental
16.
Int J Biol Macromol ; 253(Pt 3): 127001, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37729999

RESUMO

Polymer blending has been a facile method to resolve the brittle issue of poly(lactic acid) (PLA). Yet, miscibility becomes the primary concern that would affect the synergy effect of polymer blending. This study aimed to improve the miscibility of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) and PLA by lowering their molecular weights via a melt-blending-induced thermal degradation during mechanical mixing to form m-P34HB/PLA blends. The molecular weight of the P34HB was significantly reduced after blending, thereby improving the miscibility of the blends, as evidenced by the shift of glass transition temperatures. Also, simulation based on Flory-Huggins theory demonstrated increased miscibility with decreasing molecular weight of the polymers. Moreover, the thermal gravimetric analysis revealed that the PLA provided a higher shielding effect to the P34HB in the blends prepared by melt-blending than those by solution-blending, that the addition of PLA could retard the chain scission of P34HB and delay its degradation. The addition of m-P34HB at 20 wt% in the blend contributed to a 60-fold enhancement in the elongation at break and an increment of 4.6 folds in the Izod impact strength. The enzymatic degradation using proteinase K revealed the preferential to degrade the PLA in the blends and followed the surface erosion mechanism.


Assuntos
Poliésteres , Polímeros , Ácido 3-Hidroxibutírico , Poliésteres/metabolismo
17.
J Nanobiotechnology ; 21(1): 278, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598140

RESUMO

BACKGROUND: The excellent physicochemical and biomedical properties make silk fibroin (SF) suitable for the development of biomedical materials. In this research, the silk fibroin microspheres (SFMS) were customized in two size ranges, and then carried gold nanoparticles or doxorubicin to evaluate the performance of drug loading and releasing. Embolization efficiency was evaluated in rat caudal artery and rabbit auricular artery, and the in vivo distribution of iodinated SFMS (125I/131I-SFMS) after embolization of rat hepatic artery was dynamically recorded by SPECT. Transhepatic arterial radioembolization (TARE) with 131I-SFMS was performed on rat models with liver cancer. The whole procedure of selective internal radiation was recorded with SPECT/CT, and the therapeutic effects were evaluated with 18 F-FDG PET/CT. Lastly, the enzymatic degradation was recorded and followed with the evaluation of particle size on clearance of sub-micron silk fibroin. RESULTS: SFMS were of smooth surface and regular shape with pervasive pores on the surface and inside the microspheres, and of suitable size range for TAE. Drug-loading functionalized SFMS with chemotherapy or radio-sensitization, and the enhanced therapeutic effects were proved in treating HUH-7 cells as lasting doxorubicin release or more lethal radiation. For artery embolization, SFMS effectively blocked the blood supply; when 131I-SFMS serving as the embolic agent, the good labeling stability and embolization performance guaranteed the favorable therapeutic effects in treating in situ liver tumor. At the 5th day post TARE with 37 MBq/3 mg 131I-SFMS per mice, tumor activity was quickly inhibited to a comparable glucose metabolism level with surrounding normal liver. More importantly, for the fragments of biodegradable SFMS, smaller sized SF (< 800 nm) metabolized in gastrointestinal tract and excreted by the urinary system, while SF (> 800 nm) entered the liver within 72 h for further metabolism. CONCLUSION: The feasibility of SFMS as degradable TARE agent for liver cancer was primarily proved as providing multiple therapeutic potentials.


Assuntos
Fibroínas , Nanopartículas Metálicas , Animais , Camundongos , Coelhos , Ratos , Ouro , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Artérias , Doxorrubicina/farmacologia
18.
ACS Appl Mater Interfaces ; 15(36): 42271-42283, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37643896

RESUMO

In this proof-of-concept study, cardiomyogenic differentiation of induced pluripotent stem cells (iPSCs) is combined with energy harvesting from simulated cardiac motion in vitro. To achieve this, silk fibroin (SF)-based porous scaffolds are designed to mimic the mechanical and physical properties of cardiac tissue and used as triboelectric nanogenerator (TENG) electrodes. The load-carrying mechanism, ß-sheet content, degradation characteristics, and iPSC interactions of the scaffolds are observed to be interrelated and regulated by their pore architecture. The SF scaffolds with a pore size of 379 ± 34 µm, a porosity of 79 ± 1%, and a pore interconnectivity of 67 ± 1% upregulated the expression of cardiac-specific gene markers TNNT2 and NKX2.5 from iPSCs. Incorporating carbon nanofibers (CNFs) enhances the elastic modulus of the scaffolds to 45 ± 3 kPa and results in an electrical conductivity of 0.021 ± 0.006 S/cm. The SF and SF/CNF scaffolds are used as conjugate TENG electrodes and generate a maximum power output of 0.37 × 10-3 mW/m2, with an open-circuit voltage and a short circuit current of 0.46 V and 4.5 nA, respectively, under simulated cardiac motion. A novel approach is demonstrated for fabricating scaffold-based cardiac patches that can serve as tissue scaffolds and simultaneously allow energy harvesting.


Assuntos
Fibroínas , Células-Tronco Pluripotentes Induzidas , Nanofibras , Carbono , Diferenciação Celular
19.
Materials (Basel) ; 16(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37512361

RESUMO

Polylactides (PLAs) and lactide copolymers are biodegradable, compostable, and derived from renewable resources, offering a sustainable alternative to petroleum-based synthetic polymers owing to their advantages of comparable mechanical properties with commodity plastics and biodegradability. Their hydrolytic stability and thermal properties can affect their potential for long-lasting applications. However, stereocomplex crystallization is a robust method between isomer PLAs that allows significant amelioration in copolymer properties, such as thermal stability, mechanical properties, and biocompatibility, through substantial intermolecular interactions amid l-lactyl and d-lactyl sequences, which have been the key approach to initial degradation rate and further PLA applications. It was demonstrated that the essential parameters affecting stereocomplexation are the mixing ratio and the chain length of each unit sequence. This study deals with the molecular weight, one of the specific interactions between isomers of PLAs. A solution polymerization method was applied to control molecular weight and chain architecture. The stereocomplexation was monitored with DSC. It was confirmed that the lower molecular weight polymer showed a higher degradation rate, as a hydrolyzed fragment having a molecular weight below a certain length dissolves into the water. To systematically explore the critical contribution of molecular weights, the Langmuir system was used to observe the stereocomplexation effect and the overall degradation rate.

20.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446333

RESUMO

The tandem mass spectrometry (MS/MS) approach employing an ion trap mass analyzer (IT) was evaluated in isomers recognition. The proposed approach consists of sole, simple, and rapid liquid chromatographic separation (HPLC) without requiring resolution between the analytes. Then, the MS/MS properties were optimized to solve the signal assignment using post-processing data elaboration (LEDA). The IT-MS/MS experiment uses the same site, helium as collision gas, and different time steps to modify the applied conditions on the studied ions. Nevertheless, helium cannot ensure the quick energization of the precursor ion due to its small cross-section. Then, different combinations between excitation amplitude (ExA) and excitation time (ExT) were tested to achieve the activation of the fragmentation channels and the formation of the MS/MS spectrum. Usually, the IT-MS/MS acquisition cycle is longer for other multistage instruments, decreasing the frequency of sample data collection and influencing the chromatographic profile. To solve these problems, two time segments were set up, and the elution conditions were optimized with a compromise between peaks distinction and run time reduction. The developed HPLC-MS/MS method was checked and applied to analyze a series of human plasma samples spiked with an equimolar mixture of pair of isomers.


Assuntos
Hélio , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...